Routing in Networks with Stochastic Waiting and
Transit Times

Claudio Salmin

25th February, 2010

Contents

1 Introduction 2
1.1 Scientific Background of ICNs, 3
1.2 General Research Objectives 4
1.3 Bus Switched Network 4
1.4 The Specific Task oo 5

2 The Simulator 6
2.1 Challenges and Design Choices 6
2.2 High Level Description 8
2.3 Main Algorithms oL 9

2.3.1 Segment to Segment Algorithm 9
2.3.2 Circle to Segment Algorithm 12

3 Results 15

4 Conclusion and Future Work 17

A Google Transit Feed 20

B Converting Latitude/Longitude to Universal Transverse Mer-
cator (UTM) 21

Chapter 1

Introduction

Intermittently Connected Networks (ICNs), also known as Delay Tolerant
Networks (DTNs), are mobile wireless networks where most of the time there
is no complete path from a source to a destination (because the network is
sparse or because of nodes mobility and vagaries of the wireless channel).
In such a scenario information delivery is then based on the store-carry-
forward paradigm: a mobile node first stores the routing message from the
source, carries it from a physical location to another and then forwards it
to another intermediate node or to the destination. Most of the research on
routing in ICNs has focused on two extreme cases: 1) when contacts among
nodes are deterministic and known in advance or 2) when they cannot be
predicted and are supposed to obey to some generic random mobility model.
Many interesting scenarios do not fall in any of these two cases, because
the underlying node mobility is known in advance, but it can be modified
by random effects. Maestro team at INRIA is currently working on such
networks, called “quasi-deterministic“ ICNs. In particular they want to
address the routing and scheduling problem in a public bus transportation
of a major industrial city. My contribution to this research project is to
develop a smulator which, given the real data traces or the scheduling of
the buses in the public transportation network, determines all the possible
transmission opportunities between both bus to bus and bus to stop. Given
the problem of where to place the wireless device to transmit the data, on the
buses, on the stops or on both buses and stops, the results of this simulator
will help to decide which one can be the best strategy under the conditions
of flooding algorithm for the dissamination of the data.

My research project was organized into two major parts: modelization
of the algorithm to determine the transmission opportunities and simulator
implementation.

1.1 Scientific Background of ICNs

Some of the recent applications using wireless communications (wildlife mon-
itoring, inter-vehicles communication, battlefield communication,...) are
characterized by challenging network scenarios. Most of the time there
is not a complete path from a source to a destination (because the net-
work is sparse), or such a path is highly unstable and may change or break
while being discovered (because of nodes mobility and time-variations of the
wireless channel). Networks under these conditions are usually referred to
as Intermittently Connected Networks (ICNs) or Delay Tolerant Networks
(DTNs). In these challenging environments, popular ad hoc routing proto-
cols such as AODV [2] and OLSR [1] fail to establish routes. This is due
to these protocols trying to first establish a complete route and then, after
the route has been established, forward the actual data. Such protocols are
therefore not suited for these new scenarios. Information delivery is then
based on the store-carry-forward paradigm: a mobile node first stores the
routing message from the source, carries it from a physical location to an-
other and then forwards it to an intermediate node or to the destination.
It is important to notice that the performance of ICNs are directly dictated
by the inter-contact times between the nodes (which, in turn, are the result
of nodes mobility pattern in the network). In particular, packet delivery
delays become comparable with these inter-contact times, implying that ap-
plication running on such networks should be tolerant to delays of order of
minutes/hours (from which the name of delay tolerant networks originates).
At the core of this research line are routing and scheduling algorithms: at
any given time, each node should find when and where to forward the data
stored in its buffer so that it reaches the destination in a timely manner.
Moreover routing for ICNs is not only limited to forwarding schemes, where
a single copy of each packet is present in the network [7], but it also include
replication schemes, which send many copies of the same data packet across
the network. A prime example of replication schemes are epidemic routing
algorithms (a.k.a flooding algorithms) in which each node sends each packet
to all its neighbors. Replication improves performance in terms of delivery
probability and delivery delay when contacts cannot be predicted or when
transmissions are unreliable, but at the same time it implies higher costs in
terms of required bandwidth, transmission energy and buffer requirements
(see [8]).

1.2 General Research Objectives

Most of the research on routing in ICNs has focused on two extreme cases: 1)
when contacts among nodes are deterministic and known in advance (e.g. in
the case of space communications among satellites, probes and earth or space
stations [9]) or 2) when they cannot be predicted (e.g. for human and animal
mobility [3, 4]) and are supposed to obey to some generic random mobility
model, like random way-point, random direction or Brownian models. Many
interesting scenarios do not fall in any of these two cases: even complex
mobility patterns often exhibit some form of periodicity or in other cases
the underlying node mobility is known in advance, but it can be modified by
random effects. A clear example is that of a vehicular network carrying data
over public transportation (e.g., buses): the predictions of the contact times
are derived from the schedule and routes of the buses; on the other hand,
delays in bus operations clearly change the contact times or even prevent
contact to occur, implying the predictions are not necessarily accurate.

A preliminary investigation done by Maestro team (INRIA) in collab-
oration with Polythecnic of Turin and Columbia University suggests that
there is currently no framework to study comprehensively all the range of
possible scenarios between deterministic contacts and unpredictable random
contacts. For this reason, during the project, they plan to focus only on a
specific class of networks characterized by small deviations from the de-
terministic contact model (“quasi-deterministic” ICNs). In particular, their
assumption is that predictions of the contact times between nodes are known
in advance, however these predictions are not necessarily accurate: contacts
can occur either before or after their prediction times (e.g. the bus my arrive
earlier or later to the stop).

1.3 Bus Switched Network

The model is applied to a public transportation network, where a node can
be either a bus or a bus stop. It is considered an opportunistic data network
formed by (some) buses and bus stops equipped with wireless devices, e.g.
based on WiFi technologies, like in DieselNet [15]. Most of the stops act
as disconnected relay nodes, and a few of them are also connected to the
Internet. Data are delivered across town following the store-carry-forward
network paradigm, based on multi-hop communication in which two nodes
may exchange data messages whenever they are within transmission range
of each other. A Bus-based network is a convenient solution as wireless
backbone for delay tolerant applications in a urban scenario. In fact, the
public transportation system provides access to a large set of users (e.g. the
passengers themselves) and is already designed to guarantee a coverage of
the urban area, taking into account human mobility patterns.

1.4 The Specific Task

The aim of my research project is to build a simulator that, given the real
data traces or the schedules of a public bus transportation, detects all the
possible transmission opportunities between both bus to bus and bus to
stop. I consider as transmission opportunities a moment in time when a
bus enters in the wireless device range of either an other bus or a stop, at
this moment, for both the nodes, is possible to establish a link and exchange
some data. With the simulator I can determine both the start and the finish
time of the transmission opportunities.

Thanks to the results of the simulation I can define how data is spread
over the network (how the bus stops are infected). I have considered a
public transportation system in a major industrial city (Turin), with more
than one million people living in the main urban area and more then two
millions inhabitants in the whole metropolitan area. My starting point is a
set of schedules of this public transportation system serving an area of about
200 km? through about 7500 stops and 1500 different vehicles distributed
among 250 different lines. These traces include the complete schedule for a
working day.

Given the high number of stops compared to the number of buses, with
the results provided by the simulator is also possible to understand whether
investing money in infrastructure equipment to install wireless device at the
stops (at least half of them should be equipped) is a good strategy or not.

The traces use the format specified by the Google Transit Data Feed.
All the transmission opportunity are determined using geometrical models
described in sections 2.3.1 and 2.3.2.

Chapter 2

The Simulator

2.1 Challenges and Design Choices

I suppose that each node (bus or bus stop) is equipped with a wireless
device, this means that each node is able to establish a link and deliver data
whenever an other node enter its wireless range. The aim of this simulator is
to find all the possible transmission opportunities between both bus to bus
and bus to stop. From the collection of traces I derived 7500 stops and 1500
different vehicles distributed among 250 different lines which create a quite
big graph if I want to determine all the possible transmission opportunities.
Moreover the buses are changing their position with the time and I did
not want to sample the system because it is difficult to determine the good
sampling frequency: if it is too high your system state might not change
between two sampling periods, on the other hand, if it is too low you might
loose some states. In order to simplify this complex scenario I decided to
divide the problem into two easier subproblems:

e Given two consecutive stops, I create an imaginary line segment the
connects them. This provides me a large set of segments where each
pair of segments represent a potential transmission opportunity, let
me call it intersection. Of course the main condition is that the two
segment do not have to belong to the same bus line. The problem is
that each node has a transmission range, this means that I can not
simply apply a segment to segment intersection mechanism. Hence,
the final solution is to determine the minimum distance between two
line segments, if this distance is lower than the wireless device range,
these two segments are stored as potential intersection.

e At this point I have all the potential intersections between segments.
To determine the bus to stop it is really easy because the stop is never
moving. For the transmission opportunities of a bus with the stops of
its line this is really trivial, I just need to consider the stop as a circle,

where the radius of the circle is the range of the wireless device, the bus
as line segment that intersect the circle with a given speed, and deter-
mine the instant time the transmission opportunity start and finishes,
this transmission opportunities always happen. Not more complicate
than the previous case is the case of bus transmission opportunities
with the other stops of all the other lines, in fact in this case the pro-
cedure is more or less the same as before, I just need to make sure
that the distance between the segment I am considering and the bus
stop is lower than the wireless device range, also in this case I am able
to determine the instant time the transmission opportunity start and
finishes. More complex is the case of the transmission opportunity be-
tween two segments. In fact, it might happen that two segments are
physically close enough that there is a transmission opportunity but
the schedule of the buses is such that they can not meet. In this case
the solution is to consider one of the two buses as not moving circle,
where the radius of the circle is the range of the wireless device, and the
other bus moving with a relative speed to the first bus. If the second
bus intersects the circle before one of the two buses change segment, I
am sure that the two buses intersect and I am able to determine both
the start and the finish transmission opportunity time.

Technical Details

The simulator is written in C++, the development environment is eclipse
with the C/C++ Development Toolkit (CDT). The CDT is an open source
project (licensed under the Common Public License) implemented purely
in the Java programming language as a set of plug-ins for the Eclipse SDK
Platform. These plug-ins add a C/C++ Perspective to the Eclipse Work-
bench that can now support C/C++ development with a number of views
and wizards, along with advanced editing and debugging support, for more
details about CDT consult [14]. The choice of C++ language is due to the
following reason:

e efficient execution;
e explicit memory management;

e using references and pointers;

2.2 High Level Description

Hereafter there is a high level description of the steps followed to create the
data structure and to determine the transmission opportunities:

1. Read from the file route.txt all the available routes. Read the file cal-
endar_dates.txt and store the service_id associated to a specific date.
Read the trips.tzt file and associate each trip to the its corresponding
route, the trip is considered only if its service_id is in the ones previ-
ously stored. Read the stop_times_filtered.txt file and associate to each
trip the list of its bus stops with the arrival time and the sequence
number. Read the file stops.tzt which provides the position (in Lati-
tude and Longitude) of each bus stop. At this point the data structure
is correctly created.

2. We now have to create the segments. To do this I first need to create a
map where the KEY is the trip ID of a trip with a specific directions
and the VALUE is the list of bus stops associated to that trip, it is
important to highlight that different trips might have same direction
and indeed the same list of bus stops, with my map I consider this
trips only once. Once the map of stops is created 1 can create the
segments, a segment is a line segment that joins two consecutive bus
stops, in one segment I can have one and only one bus. It is clear
that a segment is actually an approximation of the possible path that
a bus can follow, anyway from a theoretical point of view looking at
only one trajectory I have no ways to understand if the path is really
oblique or if you are skipping corner.

3. After the creation of the segment I can start my first algorithm, the one
that calculates the minimum distance between to segment and, if this
distance is lower than the wireless device range, these two segments
are stored in a map that has a pair of bus stops IDs as KEY (this pair
actually represent the segment) and a list of all that segments that it
might intersect with.

4. As last step, I apply the circle segment intersection algorithm to all
the segments contained in the potential intersection map. We call this
mechanism circle segment because, give the two segments that might
intersect, I consider one bus as not moving (which identifies the circle)
and the other bus moving (which identifies the segment) with a rela-
tive speed the other bus. With this mechanism, depending from the
schedule of each bus, I determine whether an transmission opportunity
is really happening or not. In this last step I also determine all the
transmission opportunity between bus and stops.

In sections 2.3.1 and 2.3.2 I describe in more details the segment to segment
and circle to segment mechanisms.

2.3 Main Algorithms

2.3.1 Segment to Segment Algorithm

When I apply this mechanism I have two possible cases:

1. The two segments intersect: in this case I simply add the two segment
in my potential intersection map;

2. The two segments do not intersect: I need to calculate the minimum
distance between them and, if this distance is smaller than a given
threshold (wireless device range), I can add the two segment to the
potential intersection map.

Segment to Segment Intersection

We have two line segments [; and [y and let [; is defined in the interval
(2%, y4), (b, 95)]. If these lines were infinite and pass through these points,
I could say that these lines intersect at a unique point if they are not parallel.
l; (assuming infinity) is defined by the following formula:

— = —\T — T
Yy—U P (1)
So, intersection point is the solution of the following linear equation.

Au=B
(] 1 11
where u = [z y]T,A:[(y% yé) ($§ i%)]
-

10,.1 1 1¢,,1 1

Y1\ Xy — 7)) —T1\Ys — Y
and B = | W00 TR0,

yi(eg — 1) —21(y3 —v1)

The solution is w = A~'B. There is unique v if A is non-singular, otherwise
the lines are parallel and they don’t intersect. If the solution lies on both
the segments, i.e. ¥} < x < % (assuming 2% > 21) and ¢} <y < 4} for both
i =1 and ¢ = 2, I can conclude that the line segments intersect.

Segment to Segment Minimum Distance

Here is a simple mechanism to see if the minimum distance between two line
segment is above a given threshold R. If this is true, there is no possibility
for a bus on one of these segments to create a link with another bus on the
other segment. Note that I have to repeat this for all segments, if there are
n segments, the number of comparisons is n(n —1)/2.

p2

Figure 2.1: Minimum distance between {1 and [2

First consider the case in Fig. 2.1 that two line segments [1 and [2 don’t
intersect. The minimum distance between two line segments is the minimum
of the four following values D(pl,12), D(p2,12), D(p3,11), D(p4,11) where
D(a,b) is the distance operator, a is a point and b is either a point or a line
segment. If b is a line segment, D(a,b) gives the minimum distance between
a and any point on b.

So, I start with the distance between a point and a line segment. Let’s
consider D(pl,12). We have to find the distance D(pl, p), the projection of
the vector v1, that connects p4 to pl, onto the vector that connects p4 to
p3, v2. Note that using p3 instead of p4 would give us the same projection

and the same point p.
vl v2

v2|

D(p4,p) =

Note that if the dot product is negative, vl - v2 < 0, point p is not
located on (2 and D(pl,12) = min(D(pl,p3), D(pl,p4)).
Using D(p4, p), it easy to calculate D(pl,p).

D(pl,p) = \/Ivll2 — (D(p4,p))?
If p is on the line segment D(pl,12) = D(pl,p). However, it is likely that

p is still out of the line segment. In this case, D(pl,[2) = min(D(pl, p3), D(pl,p4)).

Similarly, I can calculate D(p2,12), D(p3,11), D(p4,11) as well. The min-
imum of these values is the minimum distance between [1 and [2.

10

Pseudo-Code

Following is a the pseudo-code to find the minimum distance between [1 and
2. We should perform this procedure for each [1, (2 pair.

Find the minimum distance between [1 and [2

1. if I1 intersects [2 (found using the mechanism in Section 2.3.1) then
2: Return 0
3: end if
4: Dmin = oo
5. Dmin = min(Dmin, dist(pl,12))
6: Dmin = min(Dmin, dist(p2,12))
7. Dmin = min(Dmin, dist(p3,11))
8: Dmin = min(Dmin, dist(p4,11))

9: Return Dmin
dist(p,1)

1: Calculate v1 and v2
//e1(1) is the first endpoint of segment [
//v1 connects el(l) to p
//v2 connects el(l) to e2(l)
if vl-v2 <0 then

Return min(D(p, el(l)), D(p, e2(l)))

end if

d= \/Ivll2 - (%22)’

V2l
Return min(d, D(p,el(1)), D(p, e2(1)))

11

Figure 2.2: Intersection between a line and a circle

2.3.2 Circle to Segment Algorithm

The major idea of this mechanism is that given two buses (two segments)
that might intersect, I consider one of them as not moving and the other
as moving with relative speed to the other bus. The difficulty is that the
schedule of the buses has the precision of one minute, this implies that in
the provided data it might happen that, if the distance between two stops
is small enough (around 200 meters), one bus has the same arrival time for
two different stops.

Let us consider first the case when the arrival time at the two stops of a
segment is different for the both buses. In this case, given the two buses bl
and b2, their arrival time at the two stops of the segment t; to for b1 and
tll t/2 for 2, I have to determine max(t1, t’l) = t1imaz and min(ta, tlg) = tomin
and calculate the position of the two buses in these two instant of time.
After this I can consider that two buses are located in points p0 and pl
at time t1mq,. We would like to see if one bus gets in the communication
range of the other. We would like to find if the point p exists. In Figure 2.2,
bold notations in capital letters, i.e. V and X, denote vectors. V denotes
the relative speed of the located at point p0 as seen by the other node and
obtained by vector difference. Let V hold until ¢9,, (i.e. until either of

12

the buses arrive at another stop which also means change of line segment).
X is the vector that connects point p0 to pl and D(a,b) be the distance
operator between two points a, b. Note that |X| = D(p0, pl).

We start the evaluation by calculating the dot product, X - V. If this
value is negative, then the buses are going away from each other so there is
no such point p. Otherwise, in order to see if there is an intersection I have
to calculate r. If r > R, R is the radius of the circle, there is no intersection.
We have

r= \/\XP — D(p0,p2)?, (2.1)
where D(p0, p2) is the projection of X onto V and can be calculated as
XV
D(p0,p2) = =~ (2:2)
V]

Dot product also gives us the angle ¢: cos(t) = %

If r < R, there is an intersection and I need to know when this happens.
First I have to find D(p0,p). Let d = D(p0,p). From law of cosines

R? = d® + [X[? — 2d|X] cos(t). (2.3)

Note that D(p,pl) = R. Using this relationship, I derive d. The time that
the intersection occurs is T = t1maz + ﬁd'. If T' < tomin, then two nodes
contact at time T'.

The pseudo-code to evaluate if there is intersection is following;:

FindIntersectionTime (p0,pl, V,t1maz, t2min)

1: Calculate X, (the vector that connects p0 to pl
: DP—X-V
. if DP < 0 then
Return NULL
end if
: Calculate D(p0, p2) using (2.2)
: Calculate r using (2.1)
: if r > R then
Return NULL
: end if
: Derive d from (2.3)
0 T t1imaz + %
2 if T > ton then
Return NULL
. end if
: Return T’

D T e T s T e = S
S T S TS

If I now consider the case where at least one of the two buses has the
same arrival time at the two stops of one segment, I am not in the condition

13

of evaluate the speed. After a long analysis I found out that there are five
particular cases that need to be considered:

1.

t1 =ty and t1 = t'1 and t'1 < tl2: in this case I have to determine
the distance between a line segment (the one of bl) and a point (the
position of b2 at time tll), if this distance is below a give threshold it
means that ,the transmission opportunity is going to happen at time
t) =ty =t

t1 < tz and ty = t'1 and tl1 = t;: this case the same as the previous
one except that now I consider the segment of the bus b2 and the
position of bl at time to, if this distance is below a give threshold it
means that the transmission opportunity is going to happen at time
ty =t, =t

t1 = t> and t/1 = t/2: in this case I have that all the four arrival
time are the same and I can infer that the transmission opportunity
is going to happen at time t; = to = t'1 = tlz.

t1 = t'1 and t1 = t'2: in this case I have to determine the distance
between a line segment (the one of b2) and a point (the position of bl
at time t7), if this distance is below a give threshold it means that the
transmission opportunity is going to happen at time t; = t'1 = t’z.

t1 < tz and tl1 = tlz: in this case I need to evaluate the position of the
bus bl in the instant time t'1 = t'2 and then evaluate the minimum
distance between the new generated segment and the one of b2, if
this distance is below a give threshold it means that the transmission
opportunity is going to happen at time tl1 = t;.

14

Chapter 3

Results

As said before, the starting point is a set of schedules of a this public trans-
portation system serving an area of about 200 km? through about 7500 stops
and 1500 different vehicles distributed among 250 different lines. These
traces include the complete schedule for a working day and the correspond-
ing GPS traces with the positions of all the vehicles during the morning rush
hour period (6 AM- 10 AM). With the simulator I was able to find around
115000 bus to bus transmission opportunities and 233000 bus to stop trans-
mission opportunities. In figure 3.1 are plotted three curves which represent
the cumulative number of infected stops over the time when are considered
three different ways of routing data:

e using bus to bus and bus to stop routing;
e using bus to stop and stop to bus routing;
e using all to all.

To have this result I examined a scenario where a data packet is injected into
the network starting from Porta Susa, which is a train station and indeed a
place with a lot of bus connections, the packet is disseminate in the network
using a flooding algorithm. When the packet reaches a bus stop (potential
destination) we increase the number of infected stops.

As can be seen from the figure, the curves All & All and Bus2Bus &
Bus2Stop are really close to each other, therefore a first conclusion is that,
using flooding algorithm, the installation of wireless devices at the bus stops
(half of them is enough) and consequently use the all to all routing algorithm
does not gives really better performance then using the bus to bus and bus
to stop only.

15

3500

3000

2500

2000

1500

Number of Infected Stops

1000

500

Bus2Bus & Bus2Stop
— — — Bus2Stop & Stop2Bus P
— = AlI2All '

0
350

400 450 500 550
t(min)

Figure 3.1: Number of Infected Stops

16

600

Chapter 4

Conclusion and Future Work

During this project I developed a simulator that, given the real traces or
the schedule of a public transportation network, is able to determine all the
transmission opportunities between bus to bus and bus to stop. Thanks to
this transmission opportunities I am able to determine how data is going to
be spread in the network and the number of infected stops over the time.
Moreover, from the results I saw that the bus to stop and stop two bus
routing does not give an important added value to the us to bus and bus to
stop routing in terms of number of infected stops.

Future work related to this project is the design of routing algorithms in
a public bus transportation network, where Wi-Fi enabled buses and stops
may be used for data delivery as well as for the transportation of passengers.
There are different aspects to work on for this problem:

e characterization of bus mobility and bus network topology starting
from real-world traces,

e study of existing routing algorithms for networks with stochastic wait-
ing and transit times,

e proposal of off-line and on-line routing algorithms,

e implementation of the new algorithms and of other standard ones for
DTNs in order to compare their performance.

17

Bibliography

[1]

T. Clausen, P. J. (editors), C. Adjih, A. Laouiti, P. Minet, P. Muh-
lethaler, A. Qayyum, and L.Viennot, Optimized link state routing pro-
tocol (OLSR), RFC 3626, pages 1-75, pp. 1-75, October 2003, network
Working Group. [Online|. Available: http://ietf.org/rfc/rfc3626.txt.

C. Perkins, E. Royer, and S. Das, “RFC 3561 Ad hoc On-
Demand Distance Vector (AODV) Routing,” 2003. [Online]. Available:
http://tools.ietf.org/html/rfc3561

J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine, “MaxProp:
Routing for vehicle-based disruption-tolerant networks,” in IEEE IN-
FOCOM, 2006.

P. Zhang, C. M. Sadler, S. A. Lyon, and M. Martonosi, “Hardware
design experiences in zebranet,” in SenSys '04: Proceedings of the 2nd

international conference on Embedded networked sensor systems. New
York, NY, USA: ACM, 2004, pp. 227-238.

S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,”
in ACM SIGCOMM, 2004, pp. 145-158.

“Delay tolerant networking research group.” [Online]. Available:
http://www.dtnrg.org.

A. Balasubramanian, B. Levine, and A. Venkataramani, “DTN routing
as a resource allocation problem,” SIGCOMM Comput. Commun. Rev.,
vol. 37, no. 4, pp. 373-384, 2007.

X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance model-
ing of epidemic routing,” Comput. Netw., vol. 51, no. 10, pp. 2867-2891,
2007.

L. Wood, W. Ivancic, W. Eddy, D. Stewart, J. Northam, C. Jackson,
and A. da Silva Curiel, “Use of the delay-tolerant networking bundle
protocol from space,” in Proc. of the 59th International Astronautical
Congress, September 2008.

18

Google Transit Feed Specifications, Available:
http://code.google.com/transit /spec/transit_feed_specification.html.

Universal Transverse Mercator, Available:
http://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system.

Universal Transverse Mercator conversion formulas, Available:
http://www.uwgb.edu/dutchs/UsefulData/UTMFormulas. HTM.

Johon P. Snyder, “Map Projection - A Working Manual”, Chapter 7.

C++ Development Toolkit, Available:
http://www.ibm.com/developerworks/opensource/library /os-ecc/.

UMass DieselNet Research. http://prisms.cs.umass.edu/dome/umassdieselnet.

19

Appendix A

Google Transit Feed

The Google Transit Data Feed Open Source Software project is an effort
to offer tools for reading, writing, and converting to and from the Google
Transit Feed Specification (GTFS) format, to help make public transit in-
formation projects more successful for agencies and other interested par-
ties. The project currently offers code for working with transit data in the
Java and Python languages. The GTFS defines a common format for public
transportation schedules and associated geographic information. The GTFS
document [10] explains the types of files that comprise a GTFS transit feed
and defines the fields used in all of those files. In this report I define only
those files that are used for my purpose.

e route.txt: this file contains information about a transit organization’s
routes. A route is a group of trips that are displayed to riders as a
single service.

e calendar.txt: this file defines dates for service IDs using a weekly
schedule. Specify when service starts and ends, as well as days of the
week where service is available.

e calendar_dates.txt: this file lists exceptions for the service IDs de-
fined in the calendar.txt file. If calendar_dates.txt includes ALL dates
of service, this file may be specified instead of calendar.txt.

e trips.txt: this file lists all trips and their routes. A trip is a sequence
of two or more stops that occurs at specific time.

e stop_times filtered.txt: this file lists the times that a vehicle arrives
at and departs from individual stops for each trip.

e stops.txt: this file contains information about individual locations
where vehicles pick up or drop off passengers.

20

Appendix B

Converting
Latitude/Longitude to
Universal Transverse
Mercator (UTM)

The position of the bus stops provided in the GTDF use Latitude and Lon-
gitude as unit of measurement. For my project, in order to calculate the
transmission opportunities between two buses, I need to evaluate the dis-
tance between two bus stops and the speed of the buses. To be able to do
that I need to convert the Latitude and Longitude coordinates into meters.
The method that I adopted for such conversion is the Universal Transverse
Mercantor (UTM). As described in [11] the Universal Transverse Mercantor
coordinate system is a grid-based method of specifying locations on the sur-
face of the Earth that is a practical application of a 2-dimensional Cartesian
coordinate system. It is used to identify locations on the earth, but differs
from the traditional method of latitude and longitude in several respects.
The UTM system is not a single map projection. The system instead em-
ploys a series of sixty zones, each of which is based on a specifically defined
secant transverse Mercator projection. The UTM system divides the surface
of Earth between 80°S and 84°N latitude into 60 zones, each 6° of longitude
in width and centered over a meridian of longitude. Zones are numbered
from 1 to 60. Zone 1 is bounded by longitude 180° to 174° W and is cen-
tered on the 177th West meridian. Zone numbering increases in an easterly
direction. Each of the 60 longitude zones in the UTM system is based on
a transverse Mercator projection, which is capable of mapping a region of
large north-south extent with a low amount of distortion. By using narrow
zones of 6° (up to 800 km) in width, and reducing the scale factor along
the central meridian by only 0.0004 (to 0.9996, a reduction of 1:2500) the
amount of distortion is held below 1 part in 1,000 inside each zone. Dis-

21

tortion of scale increases to 1.0010 at the outer zone boundaries along the
equator. In this project I just exploit this conversion methodology hence I
am not going into details about the formulas I use, good references to find
details on both formulas and description of UTM are [12] and [13].
Hereafter you can find the code that I use to make this conversion.

void Tools::transformLonLat2UTM (float iLon, float iLat, float= ox,
float a = 6378137; // equatorial radius
float b = 6356752.31; // polar radius
float e = sqrt (1 — ((b/a)*x(b/a))); // eccentricity
float elsq = 0.0067395;
float kO = 0.9996; //scale factor

int aLonZone = 31 + int (iLon/6);
int aLonZoneCM 6 *x alLonZone —183;

float* oy)

sin (2xalLat_rad) +

sin(6*xaLat_rad) +

* pow(cos(aLat_rad),2) +

float aDeltaLon_-rad = (iLon — aLonZoneCM) % M_PI / 180;

float aLat-rad = iLat = M_PI /180;

float abase = pow(exsin (aLat_-rad), 2);

abase = pow(exsin(aLat_rad) ,2);

float ar_-curv2 = a / pow(l—abase, 1/2);

float aMeridionalArc = 6367449.15 % aLat_rad — 16038.4296 =x*
16.8326133 * sin(4xaLat_-rad) — 0.0219844 x
0.00031271 = sin(8xaLat_rad);

float aki = aMeridionalArc * kO;

float akii = ar_curv2 = sin(aLat_-rad)=*cos(aLat_rad)/2;

float aPartl = (ar_curv2x*sin(aLat_-rad)xpow(cos(aLat_rad) ,3))/24;

float aPart2 = 5 — pow(tan(aLat_rad),2) + 9 % elsq

4 % pow(elsq,2) * pow(cos(aLat_rad) ,4);

float akiii = aPartl x aPart2 * kO;

float akiv = ar_curv2sxcos(aLat_rad)=xk0;

float akv = pow(cos(aLat_rad),3)*(ar_curv2/6)*(1—pow(tan(aLat_rad),2)+

elsgx*pow(cos(aLat_rad),2)) =* kO;

float aRawNorthing = (akitakii*aDeltaLon_-rad*aDeltaLon_rad+
akiiixpow(aDeltaLon_rad ,4));

float aNorthing;

if (aRawNorthing < 0)

aNorthing

else

aRawNorthing ;

aNorthing
float aEsting =
xox = aEsting;

*Oy aNorthing ;

10000000 4+ aRawNorthing;

22

500000+ (akivxaDeltaLon_rad+akvspow(aDeltaLon_rad ,3));

